If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2=21u-18
We move all terms to the left:
4u^2-(21u-18)=0
We get rid of parentheses
4u^2-21u+18=0
a = 4; b = -21; c = +18;
Δ = b2-4ac
Δ = -212-4·4·18
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{17}}{2*4}=\frac{21-3\sqrt{17}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{17}}{2*4}=\frac{21+3\sqrt{17}}{8} $
| 2Y-18x=16 | | 30r-48=7r-25 | | 7/6x-1/6•24=7/6x- | | |x/6-8|=|-3| | | -2h=4−2h | | 6+m=1-4m | | 5/x-2=-2/x+1+29/(x-2)(x=1) | | x^2(x+1)-9(x+1)=0 | | -10v−1=-10v | | 9+8j=8j+9 | | 2(5x-3)-3(2x+1)=9 | | 18x-4.8=6 | | 1+6n=9n+7 | | 5-2u=17 | | -6u−4=-7u | | x2+6x=56 | | 10m=-7+9m | | 10q+9=10q−8 | | x+11+2x-4+2x+7+2x+13+2x-17+3x-6+3x-9+6x=360 | | 13s+20(2235-s)=34431 | | K=(3x9)-(5x0) | | x-+10=-6 | | 7(x-1)-4=4x+3(-2+x) | | (3/4x)+6=4-x | | 15=5+23t-16t^2 | | 15+(35+16)=15+35+n | | -x-10=8 | | 2235(13n+20n)=34431 | | x+10/20=(3/4)x | | 9u^2+36=0 | | -10+4k=6k+10 | | 5x-9+3x=7+8x-16 |